Langfuse JS/TS SDKs
    Preparing search index...

    General-purpose observation wrapper for tracking operations, functions, and workflows.

    LangfuseSpan is the default and most versatile observation type, designed for tracing any operation that has a defined start and end time. It serves as the foundation for building hierarchical traces and can contain any other observation type as children.

    • Business Logic: User workflows, order processing, data transformations
    • API Operations: REST endpoint handling, database queries, external service calls
    • System Operations: File I/O, network requests, background jobs
    • Pipeline Steps: Data processing stages, validation steps, orchestration
    • Application Functions: Any measurable operation in your application
    • Hierarchical Structure: Can contain child observations of any type
    • Flexible Attributes: Supports arbitrary input, output, and metadata
    • Duration Tracking: Automatically measures execution time from start to end
    • Status Monitoring: Tracks success/failure states and error conditions
    • Context Propagation: Maintains trace context for distributed operations
    1. Creation: Span starts automatically when created
    2. Updates: Add input data, intermediate state, metadata as needed
    3. Child Operations: Create nested observations for sub-operations
    4. Completion: Update with final output and call .end() to finish
    // Basic span tracking
    const span = startObservation('user-authentication', {
    input: { username: 'john_doe', method: 'oauth' },
    metadata: { provider: 'google' }
    });

    try {
    const user = await authenticateUser(credentials);
    span.update({
    output: { userId: user.id, success: true }
    });
    } catch (error) {
    span.update({
    level: 'ERROR',
    output: { success: false, error: error.message }
    });
    } finally {
    span.end();
    }

    // Nested operations
    const workflow = startObservation('order-processing', {
    input: { orderId: 'ord_123' }
    });

    const validation = workflow.startObservation('validation', {
    input: { items: cartItems }
    });
    validation.update({ output: { valid: true } });
    validation.end();

    const payment = workflow.startObservation('payment', {
    input: { amount: 100 }
    });
    payment.update({ output: { status: 'completed' } });
    payment.end();

    workflow.update({
    output: { status: 'confirmed', steps: 2 }
    });
    workflow.end();

    Hierarchy

    • LangfuseBaseObservation
      • LangfuseSpan
    Index

    Constructors

    • Parameters

      • params: LangfuseSpanParams

      Returns LangfuseSpan

    Properties

    id: string

    The span ID from the OpenTelemetry span context

    otelSpan: Span

    The underlying OpenTelemetry span

    traceId: string

    The trace ID from the OpenTelemetry span context

    The underlying OpenTelemetry span

    Accessors

    • get tracer(): Tracer

      Gets the Langfuse OpenTelemetry tracer instance

      Returns Tracer

    Methods

    • Ends the observation, marking it as complete.

      Parameters

      • OptionalendTime: TimeInput

        Optional end time, defaults to current time

      Returns void

    • Creates a new child observation within this observation's context with full type safety.

      This method enables hierarchical tracing by creating child observations that inherit the parent's trace context. It supports all observation types with automatic TypeScript type inference based on the asType parameter, ensuring compile-time safety for attributes and return types.

      • Child observations automatically inherit the parent's trace ID and span context
      • Creates proper parent-child relationships in the trace structure
      • Enables distributed tracing across nested operations
      • Maintains correlation between related operations
      • Return type is automatically inferred from asType parameter
      • Attributes parameter is type-checked based on observation type
      • Compile-time validation prevents type mismatches
      • Full IntelliSense support for observation-specific attributes

      Parameters

      • name: string

        Descriptive name for the child observation

      • attributes: LangfuseGenerationAttributes

        Type-specific attributes (varies by observation type)

      • options: { asType: "generation" }

        Configuration including observation type (defaults to 'span')

      Returns LangfuseGeneration

      Strongly-typed observation instance based on asType

      // Within any observation (span, generation, agent, etc.)
      const parentObservation = startObservation('ai-workflow');

      // Create child span (default)
      const dataProcessing = parentObservation.startObservation('data-processing', {
      input: { userId: '123', dataSize: 1024 },
      metadata: { processor: 'fast-lane', version: '2.1' }
      }); // Returns LangfuseSpan

      // Create child generation with full LLM attributes
      const llmCall = parentObservation.startObservation('openai-gpt-4', {
      input: [{ role: 'system', content: 'You are a helpful assistant' },
      { role: 'user', content: 'Explain machine learning' }],
      model: 'gpt-4-turbo',
      modelParameters: {
      temperature: 0.7,
      maxTokens: 500,
      topP: 1.0
      },
      metadata: { priority: 'high', timeout: 30000 }
      }, { asType: 'generation' }); // Returns LangfuseGeneration

      // Create child agent for complex reasoning
      const reasoningAgent = parentObservation.startObservation('reasoning-agent', {
      input: {
      task: 'Analyze market trends',
      context: 'Q4 2024 financial data'
      },
      metadata: {
      model: 'gpt-4',
      tools: ['calculator', 'web-search', 'data-analysis'],
      maxIterations: 5
      }
      }, { asType: 'agent' }); // Returns LangfuseAgent

      // Create child tool for external API calls
      const apiCall = reasoningAgent.startObservation('market-data-api', {
      input: {
      endpoint: '/market/trends',
      params: { symbol: 'AAPL', period: '1Y' }
      },
      metadata: {
      provider: 'alpha-vantage',
      rateLimit: 5,
      timeout: 10000
      }
      }, { asType: 'tool' }); // Returns LangfuseTool

      // Create child retriever for document search
      const docSearch = parentObservation.startObservation('document-retrieval', {
      input: {
      query: 'sustainable energy solutions',
      filters: { year: '2024', category: 'research' },
      topK: 10
      },
      metadata: {
      vectorStore: 'pinecone',
      embeddingModel: 'text-embedding-ada-002',
      similarity: 'cosine'
      }
      }, { asType: 'retriever' }); // Returns LangfuseRetriever

      // Create child evaluator for quality assessment
      const qualityCheck = parentObservation.startObservation('response-evaluator', {
      input: {
      response: llmCall.output?.content,
      reference: 'Expected high-quality explanation',
      criteria: ['accuracy', 'clarity', 'completeness']
      },
      metadata: {
      evaluator: 'custom-bert-scorer',
      threshold: 0.8,
      metrics: ['bleu', 'rouge', 'semantic-similarity']
      }
      }, { asType: 'evaluator' }); // Returns LangfuseEvaluator

      // Create child guardrail for safety checking
      const safetyCheck = parentObservation.startObservation('content-guardrail', {
      input: {
      text: llmCall.output?.content,
      policies: ['no-harmful-content', 'no-personal-info', 'professional-tone']
      },
      metadata: {
      guardrailVersion: 'v2.1',
      strictMode: true,
      confidence: 0.95
      }
      }, { asType: 'guardrail' }); // Returns LangfuseGuardrail

      // Create child embedding for vector generation
      const textEmbedding = parentObservation.startObservation('text-embedder', {
      input: {
      texts: ['Document summary', 'Key insights', 'Conclusions'],
      batchSize: 3
      },
      model: 'text-embedding-ada-002',
      metadata: {
      dimensions: 1536,
      normalization: 'l2',
      purpose: 'semantic-search'
      }
      }, { asType: 'embedding' }); // Returns LangfuseEmbedding

      // Create child event for point-in-time logging
      const userAction = parentObservation.startObservation('user-interaction', {
      input: {
      action: 'button-click',
      element: 'generate-report',
      timestamp: new Date().toISOString()
      },
      level: 'DEFAULT',
      metadata: {
      sessionId: 'sess_123',
      userId: 'user_456',
      browser: 'Chrome 120.0'
      }
      }, { asType: 'event' }); // Returns LangfuseEvent (auto-ended)

      // Chain operations - each child inherits context
      dataProcessing.update({ output: { processed: true, records: 1000 } });
      dataProcessing.end();

      llmCall.update({
      output: { role: 'assistant', content: 'Machine learning is...' },
      usageDetails: { promptTokens: 25, completionTokens: 150 }
      });
      llmCall.end();

      parentObservation.update({
      output: {
      workflowCompleted: true,
      childOperations: 8,
      totalDuration: Date.now() - startTime
      }
      });
      parentObservation.end();
    • Creates a new child observation within this observation's context with full type safety.

      This method enables hierarchical tracing by creating child observations that inherit the parent's trace context. It supports all observation types with automatic TypeScript type inference based on the asType parameter, ensuring compile-time safety for attributes and return types.

      • Child observations automatically inherit the parent's trace ID and span context
      • Creates proper parent-child relationships in the trace structure
      • Enables distributed tracing across nested operations
      • Maintains correlation between related operations
      • Return type is automatically inferred from asType parameter
      • Attributes parameter is type-checked based on observation type
      • Compile-time validation prevents type mismatches
      • Full IntelliSense support for observation-specific attributes

      Parameters

      • name: string

        Descriptive name for the child observation

      • attributes: LangfuseSpanAttributes

        Type-specific attributes (varies by observation type)

      • options: { asType: "event" }

        Configuration including observation type (defaults to 'span')

      Returns LangfuseEvent

      Strongly-typed observation instance based on asType

      // Within any observation (span, generation, agent, etc.)
      const parentObservation = startObservation('ai-workflow');

      // Create child span (default)
      const dataProcessing = parentObservation.startObservation('data-processing', {
      input: { userId: '123', dataSize: 1024 },
      metadata: { processor: 'fast-lane', version: '2.1' }
      }); // Returns LangfuseSpan

      // Create child generation with full LLM attributes
      const llmCall = parentObservation.startObservation('openai-gpt-4', {
      input: [{ role: 'system', content: 'You are a helpful assistant' },
      { role: 'user', content: 'Explain machine learning' }],
      model: 'gpt-4-turbo',
      modelParameters: {
      temperature: 0.7,
      maxTokens: 500,
      topP: 1.0
      },
      metadata: { priority: 'high', timeout: 30000 }
      }, { asType: 'generation' }); // Returns LangfuseGeneration

      // Create child agent for complex reasoning
      const reasoningAgent = parentObservation.startObservation('reasoning-agent', {
      input: {
      task: 'Analyze market trends',
      context: 'Q4 2024 financial data'
      },
      metadata: {
      model: 'gpt-4',
      tools: ['calculator', 'web-search', 'data-analysis'],
      maxIterations: 5
      }
      }, { asType: 'agent' }); // Returns LangfuseAgent

      // Create child tool for external API calls
      const apiCall = reasoningAgent.startObservation('market-data-api', {
      input: {
      endpoint: '/market/trends',
      params: { symbol: 'AAPL', period: '1Y' }
      },
      metadata: {
      provider: 'alpha-vantage',
      rateLimit: 5,
      timeout: 10000
      }
      }, { asType: 'tool' }); // Returns LangfuseTool

      // Create child retriever for document search
      const docSearch = parentObservation.startObservation('document-retrieval', {
      input: {
      query: 'sustainable energy solutions',
      filters: { year: '2024', category: 'research' },
      topK: 10
      },
      metadata: {
      vectorStore: 'pinecone',
      embeddingModel: 'text-embedding-ada-002',
      similarity: 'cosine'
      }
      }, { asType: 'retriever' }); // Returns LangfuseRetriever

      // Create child evaluator for quality assessment
      const qualityCheck = parentObservation.startObservation('response-evaluator', {
      input: {
      response: llmCall.output?.content,
      reference: 'Expected high-quality explanation',
      criteria: ['accuracy', 'clarity', 'completeness']
      },
      metadata: {
      evaluator: 'custom-bert-scorer',
      threshold: 0.8,
      metrics: ['bleu', 'rouge', 'semantic-similarity']
      }
      }, { asType: 'evaluator' }); // Returns LangfuseEvaluator

      // Create child guardrail for safety checking
      const safetyCheck = parentObservation.startObservation('content-guardrail', {
      input: {
      text: llmCall.output?.content,
      policies: ['no-harmful-content', 'no-personal-info', 'professional-tone']
      },
      metadata: {
      guardrailVersion: 'v2.1',
      strictMode: true,
      confidence: 0.95
      }
      }, { asType: 'guardrail' }); // Returns LangfuseGuardrail

      // Create child embedding for vector generation
      const textEmbedding = parentObservation.startObservation('text-embedder', {
      input: {
      texts: ['Document summary', 'Key insights', 'Conclusions'],
      batchSize: 3
      },
      model: 'text-embedding-ada-002',
      metadata: {
      dimensions: 1536,
      normalization: 'l2',
      purpose: 'semantic-search'
      }
      }, { asType: 'embedding' }); // Returns LangfuseEmbedding

      // Create child event for point-in-time logging
      const userAction = parentObservation.startObservation('user-interaction', {
      input: {
      action: 'button-click',
      element: 'generate-report',
      timestamp: new Date().toISOString()
      },
      level: 'DEFAULT',
      metadata: {
      sessionId: 'sess_123',
      userId: 'user_456',
      browser: 'Chrome 120.0'
      }
      }, { asType: 'event' }); // Returns LangfuseEvent (auto-ended)

      // Chain operations - each child inherits context
      dataProcessing.update({ output: { processed: true, records: 1000 } });
      dataProcessing.end();

      llmCall.update({
      output: { role: 'assistant', content: 'Machine learning is...' },
      usageDetails: { promptTokens: 25, completionTokens: 150 }
      });
      llmCall.end();

      parentObservation.update({
      output: {
      workflowCompleted: true,
      childOperations: 8,
      totalDuration: Date.now() - startTime
      }
      });
      parentObservation.end();
    • Creates a new child observation within this observation's context with full type safety.

      This method enables hierarchical tracing by creating child observations that inherit the parent's trace context. It supports all observation types with automatic TypeScript type inference based on the asType parameter, ensuring compile-time safety for attributes and return types.

      • Child observations automatically inherit the parent's trace ID and span context
      • Creates proper parent-child relationships in the trace structure
      • Enables distributed tracing across nested operations
      • Maintains correlation between related operations
      • Return type is automatically inferred from asType parameter
      • Attributes parameter is type-checked based on observation type
      • Compile-time validation prevents type mismatches
      • Full IntelliSense support for observation-specific attributes

      Parameters

      • name: string

        Descriptive name for the child observation

      • attributes: LangfuseSpanAttributes

        Type-specific attributes (varies by observation type)

      • options: { asType: "agent" }

        Configuration including observation type (defaults to 'span')

      Returns LangfuseAgent

      Strongly-typed observation instance based on asType

      // Within any observation (span, generation, agent, etc.)
      const parentObservation = startObservation('ai-workflow');

      // Create child span (default)
      const dataProcessing = parentObservation.startObservation('data-processing', {
      input: { userId: '123', dataSize: 1024 },
      metadata: { processor: 'fast-lane', version: '2.1' }
      }); // Returns LangfuseSpan

      // Create child generation with full LLM attributes
      const llmCall = parentObservation.startObservation('openai-gpt-4', {
      input: [{ role: 'system', content: 'You are a helpful assistant' },
      { role: 'user', content: 'Explain machine learning' }],
      model: 'gpt-4-turbo',
      modelParameters: {
      temperature: 0.7,
      maxTokens: 500,
      topP: 1.0
      },
      metadata: { priority: 'high', timeout: 30000 }
      }, { asType: 'generation' }); // Returns LangfuseGeneration

      // Create child agent for complex reasoning
      const reasoningAgent = parentObservation.startObservation('reasoning-agent', {
      input: {
      task: 'Analyze market trends',
      context: 'Q4 2024 financial data'
      },
      metadata: {
      model: 'gpt-4',
      tools: ['calculator', 'web-search', 'data-analysis'],
      maxIterations: 5
      }
      }, { asType: 'agent' }); // Returns LangfuseAgent

      // Create child tool for external API calls
      const apiCall = reasoningAgent.startObservation('market-data-api', {
      input: {
      endpoint: '/market/trends',
      params: { symbol: 'AAPL', period: '1Y' }
      },
      metadata: {
      provider: 'alpha-vantage',
      rateLimit: 5,
      timeout: 10000
      }
      }, { asType: 'tool' }); // Returns LangfuseTool

      // Create child retriever for document search
      const docSearch = parentObservation.startObservation('document-retrieval', {
      input: {
      query: 'sustainable energy solutions',
      filters: { year: '2024', category: 'research' },
      topK: 10
      },
      metadata: {
      vectorStore: 'pinecone',
      embeddingModel: 'text-embedding-ada-002',
      similarity: 'cosine'
      }
      }, { asType: 'retriever' }); // Returns LangfuseRetriever

      // Create child evaluator for quality assessment
      const qualityCheck = parentObservation.startObservation('response-evaluator', {
      input: {
      response: llmCall.output?.content,
      reference: 'Expected high-quality explanation',
      criteria: ['accuracy', 'clarity', 'completeness']
      },
      metadata: {
      evaluator: 'custom-bert-scorer',
      threshold: 0.8,
      metrics: ['bleu', 'rouge', 'semantic-similarity']
      }
      }, { asType: 'evaluator' }); // Returns LangfuseEvaluator

      // Create child guardrail for safety checking
      const safetyCheck = parentObservation.startObservation('content-guardrail', {
      input: {
      text: llmCall.output?.content,
      policies: ['no-harmful-content', 'no-personal-info', 'professional-tone']
      },
      metadata: {
      guardrailVersion: 'v2.1',
      strictMode: true,
      confidence: 0.95
      }
      }, { asType: 'guardrail' }); // Returns LangfuseGuardrail

      // Create child embedding for vector generation
      const textEmbedding = parentObservation.startObservation('text-embedder', {
      input: {
      texts: ['Document summary', 'Key insights', 'Conclusions'],
      batchSize: 3
      },
      model: 'text-embedding-ada-002',
      metadata: {
      dimensions: 1536,
      normalization: 'l2',
      purpose: 'semantic-search'
      }
      }, { asType: 'embedding' }); // Returns LangfuseEmbedding

      // Create child event for point-in-time logging
      const userAction = parentObservation.startObservation('user-interaction', {
      input: {
      action: 'button-click',
      element: 'generate-report',
      timestamp: new Date().toISOString()
      },
      level: 'DEFAULT',
      metadata: {
      sessionId: 'sess_123',
      userId: 'user_456',
      browser: 'Chrome 120.0'
      }
      }, { asType: 'event' }); // Returns LangfuseEvent (auto-ended)

      // Chain operations - each child inherits context
      dataProcessing.update({ output: { processed: true, records: 1000 } });
      dataProcessing.end();

      llmCall.update({
      output: { role: 'assistant', content: 'Machine learning is...' },
      usageDetails: { promptTokens: 25, completionTokens: 150 }
      });
      llmCall.end();

      parentObservation.update({
      output: {
      workflowCompleted: true,
      childOperations: 8,
      totalDuration: Date.now() - startTime
      }
      });
      parentObservation.end();
    • Creates a new child observation within this observation's context with full type safety.

      This method enables hierarchical tracing by creating child observations that inherit the parent's trace context. It supports all observation types with automatic TypeScript type inference based on the asType parameter, ensuring compile-time safety for attributes and return types.

      • Child observations automatically inherit the parent's trace ID and span context
      • Creates proper parent-child relationships in the trace structure
      • Enables distributed tracing across nested operations
      • Maintains correlation between related operations
      • Return type is automatically inferred from asType parameter
      • Attributes parameter is type-checked based on observation type
      • Compile-time validation prevents type mismatches
      • Full IntelliSense support for observation-specific attributes

      Parameters

      • name: string

        Descriptive name for the child observation

      • attributes: LangfuseSpanAttributes

        Type-specific attributes (varies by observation type)

      • options: { asType: "tool" }

        Configuration including observation type (defaults to 'span')

      Returns LangfuseTool

      Strongly-typed observation instance based on asType

      // Within any observation (span, generation, agent, etc.)
      const parentObservation = startObservation('ai-workflow');

      // Create child span (default)
      const dataProcessing = parentObservation.startObservation('data-processing', {
      input: { userId: '123', dataSize: 1024 },
      metadata: { processor: 'fast-lane', version: '2.1' }
      }); // Returns LangfuseSpan

      // Create child generation with full LLM attributes
      const llmCall = parentObservation.startObservation('openai-gpt-4', {
      input: [{ role: 'system', content: 'You are a helpful assistant' },
      { role: 'user', content: 'Explain machine learning' }],
      model: 'gpt-4-turbo',
      modelParameters: {
      temperature: 0.7,
      maxTokens: 500,
      topP: 1.0
      },
      metadata: { priority: 'high', timeout: 30000 }
      }, { asType: 'generation' }); // Returns LangfuseGeneration

      // Create child agent for complex reasoning
      const reasoningAgent = parentObservation.startObservation('reasoning-agent', {
      input: {
      task: 'Analyze market trends',
      context: 'Q4 2024 financial data'
      },
      metadata: {
      model: 'gpt-4',
      tools: ['calculator', 'web-search', 'data-analysis'],
      maxIterations: 5
      }
      }, { asType: 'agent' }); // Returns LangfuseAgent

      // Create child tool for external API calls
      const apiCall = reasoningAgent.startObservation('market-data-api', {
      input: {
      endpoint: '/market/trends',
      params: { symbol: 'AAPL', period: '1Y' }
      },
      metadata: {
      provider: 'alpha-vantage',
      rateLimit: 5,
      timeout: 10000
      }
      }, { asType: 'tool' }); // Returns LangfuseTool

      // Create child retriever for document search
      const docSearch = parentObservation.startObservation('document-retrieval', {
      input: {
      query: 'sustainable energy solutions',
      filters: { year: '2024', category: 'research' },
      topK: 10
      },
      metadata: {
      vectorStore: 'pinecone',
      embeddingModel: 'text-embedding-ada-002',
      similarity: 'cosine'
      }
      }, { asType: 'retriever' }); // Returns LangfuseRetriever

      // Create child evaluator for quality assessment
      const qualityCheck = parentObservation.startObservation('response-evaluator', {
      input: {
      response: llmCall.output?.content,
      reference: 'Expected high-quality explanation',
      criteria: ['accuracy', 'clarity', 'completeness']
      },
      metadata: {
      evaluator: 'custom-bert-scorer',
      threshold: 0.8,
      metrics: ['bleu', 'rouge', 'semantic-similarity']
      }
      }, { asType: 'evaluator' }); // Returns LangfuseEvaluator

      // Create child guardrail for safety checking
      const safetyCheck = parentObservation.startObservation('content-guardrail', {
      input: {
      text: llmCall.output?.content,
      policies: ['no-harmful-content', 'no-personal-info', 'professional-tone']
      },
      metadata: {
      guardrailVersion: 'v2.1',
      strictMode: true,
      confidence: 0.95
      }
      }, { asType: 'guardrail' }); // Returns LangfuseGuardrail

      // Create child embedding for vector generation
      const textEmbedding = parentObservation.startObservation('text-embedder', {
      input: {
      texts: ['Document summary', 'Key insights', 'Conclusions'],
      batchSize: 3
      },
      model: 'text-embedding-ada-002',
      metadata: {
      dimensions: 1536,
      normalization: 'l2',
      purpose: 'semantic-search'
      }
      }, { asType: 'embedding' }); // Returns LangfuseEmbedding

      // Create child event for point-in-time logging
      const userAction = parentObservation.startObservation('user-interaction', {
      input: {
      action: 'button-click',
      element: 'generate-report',
      timestamp: new Date().toISOString()
      },
      level: 'DEFAULT',
      metadata: {
      sessionId: 'sess_123',
      userId: 'user_456',
      browser: 'Chrome 120.0'
      }
      }, { asType: 'event' }); // Returns LangfuseEvent (auto-ended)

      // Chain operations - each child inherits context
      dataProcessing.update({ output: { processed: true, records: 1000 } });
      dataProcessing.end();

      llmCall.update({
      output: { role: 'assistant', content: 'Machine learning is...' },
      usageDetails: { promptTokens: 25, completionTokens: 150 }
      });
      llmCall.end();

      parentObservation.update({
      output: {
      workflowCompleted: true,
      childOperations: 8,
      totalDuration: Date.now() - startTime
      }
      });
      parentObservation.end();
    • Creates a new child observation within this observation's context with full type safety.

      This method enables hierarchical tracing by creating child observations that inherit the parent's trace context. It supports all observation types with automatic TypeScript type inference based on the asType parameter, ensuring compile-time safety for attributes and return types.

      • Child observations automatically inherit the parent's trace ID and span context
      • Creates proper parent-child relationships in the trace structure
      • Enables distributed tracing across nested operations
      • Maintains correlation between related operations
      • Return type is automatically inferred from asType parameter
      • Attributes parameter is type-checked based on observation type
      • Compile-time validation prevents type mismatches
      • Full IntelliSense support for observation-specific attributes

      Parameters

      • name: string

        Descriptive name for the child observation

      • attributes: LangfuseSpanAttributes

        Type-specific attributes (varies by observation type)

      • options: { asType: "chain" }

        Configuration including observation type (defaults to 'span')

      Returns LangfuseChain

      Strongly-typed observation instance based on asType

      // Within any observation (span, generation, agent, etc.)
      const parentObservation = startObservation('ai-workflow');

      // Create child span (default)
      const dataProcessing = parentObservation.startObservation('data-processing', {
      input: { userId: '123', dataSize: 1024 },
      metadata: { processor: 'fast-lane', version: '2.1' }
      }); // Returns LangfuseSpan

      // Create child generation with full LLM attributes
      const llmCall = parentObservation.startObservation('openai-gpt-4', {
      input: [{ role: 'system', content: 'You are a helpful assistant' },
      { role: 'user', content: 'Explain machine learning' }],
      model: 'gpt-4-turbo',
      modelParameters: {
      temperature: 0.7,
      maxTokens: 500,
      topP: 1.0
      },
      metadata: { priority: 'high', timeout: 30000 }
      }, { asType: 'generation' }); // Returns LangfuseGeneration

      // Create child agent for complex reasoning
      const reasoningAgent = parentObservation.startObservation('reasoning-agent', {
      input: {
      task: 'Analyze market trends',
      context: 'Q4 2024 financial data'
      },
      metadata: {
      model: 'gpt-4',
      tools: ['calculator', 'web-search', 'data-analysis'],
      maxIterations: 5
      }
      }, { asType: 'agent' }); // Returns LangfuseAgent

      // Create child tool for external API calls
      const apiCall = reasoningAgent.startObservation('market-data-api', {
      input: {
      endpoint: '/market/trends',
      params: { symbol: 'AAPL', period: '1Y' }
      },
      metadata: {
      provider: 'alpha-vantage',
      rateLimit: 5,
      timeout: 10000
      }
      }, { asType: 'tool' }); // Returns LangfuseTool

      // Create child retriever for document search
      const docSearch = parentObservation.startObservation('document-retrieval', {
      input: {
      query: 'sustainable energy solutions',
      filters: { year: '2024', category: 'research' },
      topK: 10
      },
      metadata: {
      vectorStore: 'pinecone',
      embeddingModel: 'text-embedding-ada-002',
      similarity: 'cosine'
      }
      }, { asType: 'retriever' }); // Returns LangfuseRetriever

      // Create child evaluator for quality assessment
      const qualityCheck = parentObservation.startObservation('response-evaluator', {
      input: {
      response: llmCall.output?.content,
      reference: 'Expected high-quality explanation',
      criteria: ['accuracy', 'clarity', 'completeness']
      },
      metadata: {
      evaluator: 'custom-bert-scorer',
      threshold: 0.8,
      metrics: ['bleu', 'rouge', 'semantic-similarity']
      }
      }, { asType: 'evaluator' }); // Returns LangfuseEvaluator

      // Create child guardrail for safety checking
      const safetyCheck = parentObservation.startObservation('content-guardrail', {
      input: {
      text: llmCall.output?.content,
      policies: ['no-harmful-content', 'no-personal-info', 'professional-tone']
      },
      metadata: {
      guardrailVersion: 'v2.1',
      strictMode: true,
      confidence: 0.95
      }
      }, { asType: 'guardrail' }); // Returns LangfuseGuardrail

      // Create child embedding for vector generation
      const textEmbedding = parentObservation.startObservation('text-embedder', {
      input: {
      texts: ['Document summary', 'Key insights', 'Conclusions'],
      batchSize: 3
      },
      model: 'text-embedding-ada-002',
      metadata: {
      dimensions: 1536,
      normalization: 'l2',
      purpose: 'semantic-search'
      }
      }, { asType: 'embedding' }); // Returns LangfuseEmbedding

      // Create child event for point-in-time logging
      const userAction = parentObservation.startObservation('user-interaction', {
      input: {
      action: 'button-click',
      element: 'generate-report',
      timestamp: new Date().toISOString()
      },
      level: 'DEFAULT',
      metadata: {
      sessionId: 'sess_123',
      userId: 'user_456',
      browser: 'Chrome 120.0'
      }
      }, { asType: 'event' }); // Returns LangfuseEvent (auto-ended)

      // Chain operations - each child inherits context
      dataProcessing.update({ output: { processed: true, records: 1000 } });
      dataProcessing.end();

      llmCall.update({
      output: { role: 'assistant', content: 'Machine learning is...' },
      usageDetails: { promptTokens: 25, completionTokens: 150 }
      });
      llmCall.end();

      parentObservation.update({
      output: {
      workflowCompleted: true,
      childOperations: 8,
      totalDuration: Date.now() - startTime
      }
      });
      parentObservation.end();
    • Creates a new child observation within this observation's context with full type safety.

      This method enables hierarchical tracing by creating child observations that inherit the parent's trace context. It supports all observation types with automatic TypeScript type inference based on the asType parameter, ensuring compile-time safety for attributes and return types.

      • Child observations automatically inherit the parent's trace ID and span context
      • Creates proper parent-child relationships in the trace structure
      • Enables distributed tracing across nested operations
      • Maintains correlation between related operations
      • Return type is automatically inferred from asType parameter
      • Attributes parameter is type-checked based on observation type
      • Compile-time validation prevents type mismatches
      • Full IntelliSense support for observation-specific attributes

      Parameters

      • name: string

        Descriptive name for the child observation

      • attributes: LangfuseSpanAttributes

        Type-specific attributes (varies by observation type)

      • options: { asType: "retriever" }

        Configuration including observation type (defaults to 'span')

      Returns LangfuseRetriever

      Strongly-typed observation instance based on asType

      // Within any observation (span, generation, agent, etc.)
      const parentObservation = startObservation('ai-workflow');

      // Create child span (default)
      const dataProcessing = parentObservation.startObservation('data-processing', {
      input: { userId: '123', dataSize: 1024 },
      metadata: { processor: 'fast-lane', version: '2.1' }
      }); // Returns LangfuseSpan

      // Create child generation with full LLM attributes
      const llmCall = parentObservation.startObservation('openai-gpt-4', {
      input: [{ role: 'system', content: 'You are a helpful assistant' },
      { role: 'user', content: 'Explain machine learning' }],
      model: 'gpt-4-turbo',
      modelParameters: {
      temperature: 0.7,
      maxTokens: 500,
      topP: 1.0
      },
      metadata: { priority: 'high', timeout: 30000 }
      }, { asType: 'generation' }); // Returns LangfuseGeneration

      // Create child agent for complex reasoning
      const reasoningAgent = parentObservation.startObservation('reasoning-agent', {
      input: {
      task: 'Analyze market trends',
      context: 'Q4 2024 financial data'
      },
      metadata: {
      model: 'gpt-4',
      tools: ['calculator', 'web-search', 'data-analysis'],
      maxIterations: 5
      }
      }, { asType: 'agent' }); // Returns LangfuseAgent

      // Create child tool for external API calls
      const apiCall = reasoningAgent.startObservation('market-data-api', {
      input: {
      endpoint: '/market/trends',
      params: { symbol: 'AAPL', period: '1Y' }
      },
      metadata: {
      provider: 'alpha-vantage',
      rateLimit: 5,
      timeout: 10000
      }
      }, { asType: 'tool' }); // Returns LangfuseTool

      // Create child retriever for document search
      const docSearch = parentObservation.startObservation('document-retrieval', {
      input: {
      query: 'sustainable energy solutions',
      filters: { year: '2024', category: 'research' },
      topK: 10
      },
      metadata: {
      vectorStore: 'pinecone',
      embeddingModel: 'text-embedding-ada-002',
      similarity: 'cosine'
      }
      }, { asType: 'retriever' }); // Returns LangfuseRetriever

      // Create child evaluator for quality assessment
      const qualityCheck = parentObservation.startObservation('response-evaluator', {
      input: {
      response: llmCall.output?.content,
      reference: 'Expected high-quality explanation',
      criteria: ['accuracy', 'clarity', 'completeness']
      },
      metadata: {
      evaluator: 'custom-bert-scorer',
      threshold: 0.8,
      metrics: ['bleu', 'rouge', 'semantic-similarity']
      }
      }, { asType: 'evaluator' }); // Returns LangfuseEvaluator

      // Create child guardrail for safety checking
      const safetyCheck = parentObservation.startObservation('content-guardrail', {
      input: {
      text: llmCall.output?.content,
      policies: ['no-harmful-content', 'no-personal-info', 'professional-tone']
      },
      metadata: {
      guardrailVersion: 'v2.1',
      strictMode: true,
      confidence: 0.95
      }
      }, { asType: 'guardrail' }); // Returns LangfuseGuardrail

      // Create child embedding for vector generation
      const textEmbedding = parentObservation.startObservation('text-embedder', {
      input: {
      texts: ['Document summary', 'Key insights', 'Conclusions'],
      batchSize: 3
      },
      model: 'text-embedding-ada-002',
      metadata: {
      dimensions: 1536,
      normalization: 'l2',
      purpose: 'semantic-search'
      }
      }, { asType: 'embedding' }); // Returns LangfuseEmbedding

      // Create child event for point-in-time logging
      const userAction = parentObservation.startObservation('user-interaction', {
      input: {
      action: 'button-click',
      element: 'generate-report',
      timestamp: new Date().toISOString()
      },
      level: 'DEFAULT',
      metadata: {
      sessionId: 'sess_123',
      userId: 'user_456',
      browser: 'Chrome 120.0'
      }
      }, { asType: 'event' }); // Returns LangfuseEvent (auto-ended)

      // Chain operations - each child inherits context
      dataProcessing.update({ output: { processed: true, records: 1000 } });
      dataProcessing.end();

      llmCall.update({
      output: { role: 'assistant', content: 'Machine learning is...' },
      usageDetails: { promptTokens: 25, completionTokens: 150 }
      });
      llmCall.end();

      parentObservation.update({
      output: {
      workflowCompleted: true,
      childOperations: 8,
      totalDuration: Date.now() - startTime
      }
      });
      parentObservation.end();
    • Creates a new child observation within this observation's context with full type safety.

      This method enables hierarchical tracing by creating child observations that inherit the parent's trace context. It supports all observation types with automatic TypeScript type inference based on the asType parameter, ensuring compile-time safety for attributes and return types.

      • Child observations automatically inherit the parent's trace ID and span context
      • Creates proper parent-child relationships in the trace structure
      • Enables distributed tracing across nested operations
      • Maintains correlation between related operations
      • Return type is automatically inferred from asType parameter
      • Attributes parameter is type-checked based on observation type
      • Compile-time validation prevents type mismatches
      • Full IntelliSense support for observation-specific attributes

      Parameters

      • name: string

        Descriptive name for the child observation

      • attributes: LangfuseSpanAttributes

        Type-specific attributes (varies by observation type)

      • options: { asType: "evaluator" }

        Configuration including observation type (defaults to 'span')

      Returns LangfuseEvaluator

      Strongly-typed observation instance based on asType

      // Within any observation (span, generation, agent, etc.)
      const parentObservation = startObservation('ai-workflow');

      // Create child span (default)
      const dataProcessing = parentObservation.startObservation('data-processing', {
      input: { userId: '123', dataSize: 1024 },
      metadata: { processor: 'fast-lane', version: '2.1' }
      }); // Returns LangfuseSpan

      // Create child generation with full LLM attributes
      const llmCall = parentObservation.startObservation('openai-gpt-4', {
      input: [{ role: 'system', content: 'You are a helpful assistant' },
      { role: 'user', content: 'Explain machine learning' }],
      model: 'gpt-4-turbo',
      modelParameters: {
      temperature: 0.7,
      maxTokens: 500,
      topP: 1.0
      },
      metadata: { priority: 'high', timeout: 30000 }
      }, { asType: 'generation' }); // Returns LangfuseGeneration

      // Create child agent for complex reasoning
      const reasoningAgent = parentObservation.startObservation('reasoning-agent', {
      input: {
      task: 'Analyze market trends',
      context: 'Q4 2024 financial data'
      },
      metadata: {
      model: 'gpt-4',
      tools: ['calculator', 'web-search', 'data-analysis'],
      maxIterations: 5
      }
      }, { asType: 'agent' }); // Returns LangfuseAgent

      // Create child tool for external API calls
      const apiCall = reasoningAgent.startObservation('market-data-api', {
      input: {
      endpoint: '/market/trends',
      params: { symbol: 'AAPL', period: '1Y' }
      },
      metadata: {
      provider: 'alpha-vantage',
      rateLimit: 5,
      timeout: 10000
      }
      }, { asType: 'tool' }); // Returns LangfuseTool

      // Create child retriever for document search
      const docSearch = parentObservation.startObservation('document-retrieval', {
      input: {
      query: 'sustainable energy solutions',
      filters: { year: '2024', category: 'research' },
      topK: 10
      },
      metadata: {
      vectorStore: 'pinecone',
      embeddingModel: 'text-embedding-ada-002',
      similarity: 'cosine'
      }
      }, { asType: 'retriever' }); // Returns LangfuseRetriever

      // Create child evaluator for quality assessment
      const qualityCheck = parentObservation.startObservation('response-evaluator', {
      input: {
      response: llmCall.output?.content,
      reference: 'Expected high-quality explanation',
      criteria: ['accuracy', 'clarity', 'completeness']
      },
      metadata: {
      evaluator: 'custom-bert-scorer',
      threshold: 0.8,
      metrics: ['bleu', 'rouge', 'semantic-similarity']
      }
      }, { asType: 'evaluator' }); // Returns LangfuseEvaluator

      // Create child guardrail for safety checking
      const safetyCheck = parentObservation.startObservation('content-guardrail', {
      input: {
      text: llmCall.output?.content,
      policies: ['no-harmful-content', 'no-personal-info', 'professional-tone']
      },
      metadata: {
      guardrailVersion: 'v2.1',
      strictMode: true,
      confidence: 0.95
      }
      }, { asType: 'guardrail' }); // Returns LangfuseGuardrail

      // Create child embedding for vector generation
      const textEmbedding = parentObservation.startObservation('text-embedder', {
      input: {
      texts: ['Document summary', 'Key insights', 'Conclusions'],
      batchSize: 3
      },
      model: 'text-embedding-ada-002',
      metadata: {
      dimensions: 1536,
      normalization: 'l2',
      purpose: 'semantic-search'
      }
      }, { asType: 'embedding' }); // Returns LangfuseEmbedding

      // Create child event for point-in-time logging
      const userAction = parentObservation.startObservation('user-interaction', {
      input: {
      action: 'button-click',
      element: 'generate-report',
      timestamp: new Date().toISOString()
      },
      level: 'DEFAULT',
      metadata: {
      sessionId: 'sess_123',
      userId: 'user_456',
      browser: 'Chrome 120.0'
      }
      }, { asType: 'event' }); // Returns LangfuseEvent (auto-ended)

      // Chain operations - each child inherits context
      dataProcessing.update({ output: { processed: true, records: 1000 } });
      dataProcessing.end();

      llmCall.update({
      output: { role: 'assistant', content: 'Machine learning is...' },
      usageDetails: { promptTokens: 25, completionTokens: 150 }
      });
      llmCall.end();

      parentObservation.update({
      output: {
      workflowCompleted: true,
      childOperations: 8,
      totalDuration: Date.now() - startTime
      }
      });
      parentObservation.end();
    • Creates a new child observation within this observation's context with full type safety.

      This method enables hierarchical tracing by creating child observations that inherit the parent's trace context. It supports all observation types with automatic TypeScript type inference based on the asType parameter, ensuring compile-time safety for attributes and return types.

      • Child observations automatically inherit the parent's trace ID and span context
      • Creates proper parent-child relationships in the trace structure
      • Enables distributed tracing across nested operations
      • Maintains correlation between related operations
      • Return type is automatically inferred from asType parameter
      • Attributes parameter is type-checked based on observation type
      • Compile-time validation prevents type mismatches
      • Full IntelliSense support for observation-specific attributes

      Parameters

      • name: string

        Descriptive name for the child observation

      • attributes: LangfuseSpanAttributes

        Type-specific attributes (varies by observation type)

      • options: { asType: "guardrail" }

        Configuration including observation type (defaults to 'span')

      Returns LangfuseGuardrail

      Strongly-typed observation instance based on asType

      // Within any observation (span, generation, agent, etc.)
      const parentObservation = startObservation('ai-workflow');

      // Create child span (default)
      const dataProcessing = parentObservation.startObservation('data-processing', {
      input: { userId: '123', dataSize: 1024 },
      metadata: { processor: 'fast-lane', version: '2.1' }
      }); // Returns LangfuseSpan

      // Create child generation with full LLM attributes
      const llmCall = parentObservation.startObservation('openai-gpt-4', {
      input: [{ role: 'system', content: 'You are a helpful assistant' },
      { role: 'user', content: 'Explain machine learning' }],
      model: 'gpt-4-turbo',
      modelParameters: {
      temperature: 0.7,
      maxTokens: 500,
      topP: 1.0
      },
      metadata: { priority: 'high', timeout: 30000 }
      }, { asType: 'generation' }); // Returns LangfuseGeneration

      // Create child agent for complex reasoning
      const reasoningAgent = parentObservation.startObservation('reasoning-agent', {
      input: {
      task: 'Analyze market trends',
      context: 'Q4 2024 financial data'
      },
      metadata: {
      model: 'gpt-4',
      tools: ['calculator', 'web-search', 'data-analysis'],
      maxIterations: 5
      }
      }, { asType: 'agent' }); // Returns LangfuseAgent

      // Create child tool for external API calls
      const apiCall = reasoningAgent.startObservation('market-data-api', {
      input: {
      endpoint: '/market/trends',
      params: { symbol: 'AAPL', period: '1Y' }
      },
      metadata: {
      provider: 'alpha-vantage',
      rateLimit: 5,
      timeout: 10000
      }
      }, { asType: 'tool' }); // Returns LangfuseTool

      // Create child retriever for document search
      const docSearch = parentObservation.startObservation('document-retrieval', {
      input: {
      query: 'sustainable energy solutions',
      filters: { year: '2024', category: 'research' },
      topK: 10
      },
      metadata: {
      vectorStore: 'pinecone',
      embeddingModel: 'text-embedding-ada-002',
      similarity: 'cosine'
      }
      }, { asType: 'retriever' }); // Returns LangfuseRetriever

      // Create child evaluator for quality assessment
      const qualityCheck = parentObservation.startObservation('response-evaluator', {
      input: {
      response: llmCall.output?.content,
      reference: 'Expected high-quality explanation',
      criteria: ['accuracy', 'clarity', 'completeness']
      },
      metadata: {
      evaluator: 'custom-bert-scorer',
      threshold: 0.8,
      metrics: ['bleu', 'rouge', 'semantic-similarity']
      }
      }, { asType: 'evaluator' }); // Returns LangfuseEvaluator

      // Create child guardrail for safety checking
      const safetyCheck = parentObservation.startObservation('content-guardrail', {
      input: {
      text: llmCall.output?.content,
      policies: ['no-harmful-content', 'no-personal-info', 'professional-tone']
      },
      metadata: {
      guardrailVersion: 'v2.1',
      strictMode: true,
      confidence: 0.95
      }
      }, { asType: 'guardrail' }); // Returns LangfuseGuardrail

      // Create child embedding for vector generation
      const textEmbedding = parentObservation.startObservation('text-embedder', {
      input: {
      texts: ['Document summary', 'Key insights', 'Conclusions'],
      batchSize: 3
      },
      model: 'text-embedding-ada-002',
      metadata: {
      dimensions: 1536,
      normalization: 'l2',
      purpose: 'semantic-search'
      }
      }, { asType: 'embedding' }); // Returns LangfuseEmbedding

      // Create child event for point-in-time logging
      const userAction = parentObservation.startObservation('user-interaction', {
      input: {
      action: 'button-click',
      element: 'generate-report',
      timestamp: new Date().toISOString()
      },
      level: 'DEFAULT',
      metadata: {
      sessionId: 'sess_123',
      userId: 'user_456',
      browser: 'Chrome 120.0'
      }
      }, { asType: 'event' }); // Returns LangfuseEvent (auto-ended)

      // Chain operations - each child inherits context
      dataProcessing.update({ output: { processed: true, records: 1000 } });
      dataProcessing.end();

      llmCall.update({
      output: { role: 'assistant', content: 'Machine learning is...' },
      usageDetails: { promptTokens: 25, completionTokens: 150 }
      });
      llmCall.end();

      parentObservation.update({
      output: {
      workflowCompleted: true,
      childOperations: 8,
      totalDuration: Date.now() - startTime
      }
      });
      parentObservation.end();
    • Creates a new child observation within this observation's context with full type safety.

      This method enables hierarchical tracing by creating child observations that inherit the parent's trace context. It supports all observation types with automatic TypeScript type inference based on the asType parameter, ensuring compile-time safety for attributes and return types.

      • Child observations automatically inherit the parent's trace ID and span context
      • Creates proper parent-child relationships in the trace structure
      • Enables distributed tracing across nested operations
      • Maintains correlation between related operations
      • Return type is automatically inferred from asType parameter
      • Attributes parameter is type-checked based on observation type
      • Compile-time validation prevents type mismatches
      • Full IntelliSense support for observation-specific attributes

      Parameters

      • name: string

        Descriptive name for the child observation

      • attributes: LangfuseGenerationAttributes

        Type-specific attributes (varies by observation type)

      • options: { asType: "embedding" }

        Configuration including observation type (defaults to 'span')

      Returns LangfuseEmbedding

      Strongly-typed observation instance based on asType

      // Within any observation (span, generation, agent, etc.)
      const parentObservation = startObservation('ai-workflow');

      // Create child span (default)
      const dataProcessing = parentObservation.startObservation('data-processing', {
      input: { userId: '123', dataSize: 1024 },
      metadata: { processor: 'fast-lane', version: '2.1' }
      }); // Returns LangfuseSpan

      // Create child generation with full LLM attributes
      const llmCall = parentObservation.startObservation('openai-gpt-4', {
      input: [{ role: 'system', content: 'You are a helpful assistant' },
      { role: 'user', content: 'Explain machine learning' }],
      model: 'gpt-4-turbo',
      modelParameters: {
      temperature: 0.7,
      maxTokens: 500,
      topP: 1.0
      },
      metadata: { priority: 'high', timeout: 30000 }
      }, { asType: 'generation' }); // Returns LangfuseGeneration

      // Create child agent for complex reasoning
      const reasoningAgent = parentObservation.startObservation('reasoning-agent', {
      input: {
      task: 'Analyze market trends',
      context: 'Q4 2024 financial data'
      },
      metadata: {
      model: 'gpt-4',
      tools: ['calculator', 'web-search', 'data-analysis'],
      maxIterations: 5
      }
      }, { asType: 'agent' }); // Returns LangfuseAgent

      // Create child tool for external API calls
      const apiCall = reasoningAgent.startObservation('market-data-api', {
      input: {
      endpoint: '/market/trends',
      params: { symbol: 'AAPL', period: '1Y' }
      },
      metadata: {
      provider: 'alpha-vantage',
      rateLimit: 5,
      timeout: 10000
      }
      }, { asType: 'tool' }); // Returns LangfuseTool

      // Create child retriever for document search
      const docSearch = parentObservation.startObservation('document-retrieval', {
      input: {
      query: 'sustainable energy solutions',
      filters: { year: '2024', category: 'research' },
      topK: 10
      },
      metadata: {
      vectorStore: 'pinecone',
      embeddingModel: 'text-embedding-ada-002',
      similarity: 'cosine'
      }
      }, { asType: 'retriever' }); // Returns LangfuseRetriever

      // Create child evaluator for quality assessment
      const qualityCheck = parentObservation.startObservation('response-evaluator', {
      input: {
      response: llmCall.output?.content,
      reference: 'Expected high-quality explanation',
      criteria: ['accuracy', 'clarity', 'completeness']
      },
      metadata: {
      evaluator: 'custom-bert-scorer',
      threshold: 0.8,
      metrics: ['bleu', 'rouge', 'semantic-similarity']
      }
      }, { asType: 'evaluator' }); // Returns LangfuseEvaluator

      // Create child guardrail for safety checking
      const safetyCheck = parentObservation.startObservation('content-guardrail', {
      input: {
      text: llmCall.output?.content,
      policies: ['no-harmful-content', 'no-personal-info', 'professional-tone']
      },
      metadata: {
      guardrailVersion: 'v2.1',
      strictMode: true,
      confidence: 0.95
      }
      }, { asType: 'guardrail' }); // Returns LangfuseGuardrail

      // Create child embedding for vector generation
      const textEmbedding = parentObservation.startObservation('text-embedder', {
      input: {
      texts: ['Document summary', 'Key insights', 'Conclusions'],
      batchSize: 3
      },
      model: 'text-embedding-ada-002',
      metadata: {
      dimensions: 1536,
      normalization: 'l2',
      purpose: 'semantic-search'
      }
      }, { asType: 'embedding' }); // Returns LangfuseEmbedding

      // Create child event for point-in-time logging
      const userAction = parentObservation.startObservation('user-interaction', {
      input: {
      action: 'button-click',
      element: 'generate-report',
      timestamp: new Date().toISOString()
      },
      level: 'DEFAULT',
      metadata: {
      sessionId: 'sess_123',
      userId: 'user_456',
      browser: 'Chrome 120.0'
      }
      }, { asType: 'event' }); // Returns LangfuseEvent (auto-ended)

      // Chain operations - each child inherits context
      dataProcessing.update({ output: { processed: true, records: 1000 } });
      dataProcessing.end();

      llmCall.update({
      output: { role: 'assistant', content: 'Machine learning is...' },
      usageDetails: { promptTokens: 25, completionTokens: 150 }
      });
      llmCall.end();

      parentObservation.update({
      output: {
      workflowCompleted: true,
      childOperations: 8,
      totalDuration: Date.now() - startTime
      }
      });
      parentObservation.end();
    • Creates a new child observation within this observation's context with full type safety.

      This method enables hierarchical tracing by creating child observations that inherit the parent's trace context. It supports all observation types with automatic TypeScript type inference based on the asType parameter, ensuring compile-time safety for attributes and return types.

      • Child observations automatically inherit the parent's trace ID and span context
      • Creates proper parent-child relationships in the trace structure
      • Enables distributed tracing across nested operations
      • Maintains correlation between related operations
      • Return type is automatically inferred from asType parameter
      • Attributes parameter is type-checked based on observation type
      • Compile-time validation prevents type mismatches
      • Full IntelliSense support for observation-specific attributes

      Parameters

      • name: string

        Descriptive name for the child observation

      • Optionalattributes: LangfuseSpanAttributes

        Type-specific attributes (varies by observation type)

      • Optionaloptions: { asType?: "span" }

        Configuration including observation type (defaults to 'span')

      Returns LangfuseSpan

      Strongly-typed observation instance based on asType

      // Within any observation (span, generation, agent, etc.)
      const parentObservation = startObservation('ai-workflow');

      // Create child span (default)
      const dataProcessing = parentObservation.startObservation('data-processing', {
      input: { userId: '123', dataSize: 1024 },
      metadata: { processor: 'fast-lane', version: '2.1' }
      }); // Returns LangfuseSpan

      // Create child generation with full LLM attributes
      const llmCall = parentObservation.startObservation('openai-gpt-4', {
      input: [{ role: 'system', content: 'You are a helpful assistant' },
      { role: 'user', content: 'Explain machine learning' }],
      model: 'gpt-4-turbo',
      modelParameters: {
      temperature: 0.7,
      maxTokens: 500,
      topP: 1.0
      },
      metadata: { priority: 'high', timeout: 30000 }
      }, { asType: 'generation' }); // Returns LangfuseGeneration

      // Create child agent for complex reasoning
      const reasoningAgent = parentObservation.startObservation('reasoning-agent', {
      input: {
      task: 'Analyze market trends',
      context: 'Q4 2024 financial data'
      },
      metadata: {
      model: 'gpt-4',
      tools: ['calculator', 'web-search', 'data-analysis'],
      maxIterations: 5
      }
      }, { asType: 'agent' }); // Returns LangfuseAgent

      // Create child tool for external API calls
      const apiCall = reasoningAgent.startObservation('market-data-api', {
      input: {
      endpoint: '/market/trends',
      params: { symbol: 'AAPL', period: '1Y' }
      },
      metadata: {
      provider: 'alpha-vantage',
      rateLimit: 5,
      timeout: 10000
      }
      }, { asType: 'tool' }); // Returns LangfuseTool

      // Create child retriever for document search
      const docSearch = parentObservation.startObservation('document-retrieval', {
      input: {
      query: 'sustainable energy solutions',
      filters: { year: '2024', category: 'research' },
      topK: 10
      },
      metadata: {
      vectorStore: 'pinecone',
      embeddingModel: 'text-embedding-ada-002',
      similarity: 'cosine'
      }
      }, { asType: 'retriever' }); // Returns LangfuseRetriever

      // Create child evaluator for quality assessment
      const qualityCheck = parentObservation.startObservation('response-evaluator', {
      input: {
      response: llmCall.output?.content,
      reference: 'Expected high-quality explanation',
      criteria: ['accuracy', 'clarity', 'completeness']
      },
      metadata: {
      evaluator: 'custom-bert-scorer',
      threshold: 0.8,
      metrics: ['bleu', 'rouge', 'semantic-similarity']
      }
      }, { asType: 'evaluator' }); // Returns LangfuseEvaluator

      // Create child guardrail for safety checking
      const safetyCheck = parentObservation.startObservation('content-guardrail', {
      input: {
      text: llmCall.output?.content,
      policies: ['no-harmful-content', 'no-personal-info', 'professional-tone']
      },
      metadata: {
      guardrailVersion: 'v2.1',
      strictMode: true,
      confidence: 0.95
      }
      }, { asType: 'guardrail' }); // Returns LangfuseGuardrail

      // Create child embedding for vector generation
      const textEmbedding = parentObservation.startObservation('text-embedder', {
      input: {
      texts: ['Document summary', 'Key insights', 'Conclusions'],
      batchSize: 3
      },
      model: 'text-embedding-ada-002',
      metadata: {
      dimensions: 1536,
      normalization: 'l2',
      purpose: 'semantic-search'
      }
      }, { asType: 'embedding' }); // Returns LangfuseEmbedding

      // Create child event for point-in-time logging
      const userAction = parentObservation.startObservation('user-interaction', {
      input: {
      action: 'button-click',
      element: 'generate-report',
      timestamp: new Date().toISOString()
      },
      level: 'DEFAULT',
      metadata: {
      sessionId: 'sess_123',
      userId: 'user_456',
      browser: 'Chrome 120.0'
      }
      }, { asType: 'event' }); // Returns LangfuseEvent (auto-ended)

      // Chain operations - each child inherits context
      dataProcessing.update({ output: { processed: true, records: 1000 } });
      dataProcessing.end();

      llmCall.update({
      output: { role: 'assistant', content: 'Machine learning is...' },
      usageDetails: { promptTokens: 25, completionTokens: 150 }
      });
      llmCall.end();

      parentObservation.update({
      output: {
      workflowCompleted: true,
      childOperations: 8,
      totalDuration: Date.now() - startTime
      }
      });
      parentObservation.end();
    • Updates this span with new attributes.

      Parameters

      Returns LangfuseSpan

      This span for method chaining

      span.update({
      output: { result: 'success' },
      level: 'DEFAULT',
      metadata: { duration: 150 }
      });
    • Updates the parent trace with new attributes.

      This sets trace-level attributes that apply to the entire trace, not just this specific observation.

      Parameters

      Returns LangfuseSpan

      This observation for method chaining